抽象的な

A normalization method based on variance and median adjustment for massive mRNA polyadenylation data

Guoli Ji, Ying Wang, MingchenWu, Yangzi Zhang, Xiaohui Wu


This paper proposed a normalizationmethod based on minimumvariance and median adjustment (MVM), and then made a comprehensive comparison of three normalization methods including DESeq, TMMand MVM. In this study, the MVM method was evaluated using polyadenylation [poly(A)] data and gene expression data fromArabidopsis by ways of empirical statistical criterias of mean square error (MSE) and Kolmogorov-Smirnov (K-S) statistic. Experimental results demonstrated the high performance ofMVMmethod in that it could accurately remove the systematic bias and make the distributions of normalized data stable.


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 電子ジャーナルライブラリ
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル