抽象的な

A novel method for nonlinear detection of biomedical signal based on fuzzy entropy

Cao Rui, Wang Huiqing, Deng Hongxia, Li Conggai, Chen Junjie


The nonlinearity of biomedical signals time series is detected by surrogate method. However, the traditional statistics in surrogate method, such as correlation dimension (D2) and approximate entropy (ApEn), have some insufficiency in application, especially lower time efficiency. To solve these deficiencies, this study presents the fuzzy entropy (FuzzyEn) as a statistics of the surrogate method to detect the nonlinearity of time series and verify that in two simulation datasets. It was found that, for various lengths of time series, the new method can accurately detect the linearity or nonlinearity of them, and perform much better in time efficiency compared with traditional statistics. The results show that, the method presented in this article is an accurate, effective method to detect the nonlinearity of the biomedical signal.


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • ユーロパブ
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル