抽象的な

A study of X-ray machine image local semantic features extraction model based on Bag-of-Words for airport security

Ning Zhang, Jinfu Zhu


The aviation security at the airport has been faced with increasingly severe situations since the 9-11 event. It’s of utmost importance to train airport X-ray machine screeners image recognition competency. So they can prevent terrorists from bringing dangerous articles in their carry-on or checked bags. However, usually the luggages are placed in different positions and the density & volume of articles differ greatly. As a result, dangerous articles show a variety of X-ray image features. It’s easy for the confused screeners to miss or incorrectly detect dangerous articles. This has been a hidden danger for civil aviation safety. For image recognition improvement, the researcher analyzed the visual semantics of dangerous goods images and applied a local semantic features extraction method. After classification and summarization, the method was used to train the screeners for particular image recognition. The comparison showed the improved accuracy and efficiency of image recognition for the screeners and demonstrated a satisfactory effect


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • ユーロパブ
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル