抽象的な

An algorithm in quality inspection of large marine data based on block-nested-loops

Hu Guang-ming, Cao Nan-ya


Large marine data possesses several typical characteristics, such as large amount, multisource, multiple dimensions, multi-type and so on. How to design an optimal quality inspection plan and control the ocean data timely becomesmore and more important for the application of largemarine data. Based on skyline, it proposed a method to select the optimal quality inspection plan for the quality inspection of large marine data. Firstly, the residual of acceptance quality probability of each quality inspection plans for ocean big data were calculated byHyper-geometric distributionmodel. And then, the optimal quality inspection plan was selected based on the algorithm of block-nested-loops (BNL), which compared the residual of acceptance quality probability of each quality inspection plans one by one. Finally, the proposed method is verified by inspecting the quality of the largemarine data, which is collected bymonitoring sites in a certain sea area.


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 電子ジャーナルライブラリ
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル