抽象的な

Application of learning vector quantization neural network in the financial failure prediction

Ying Feng, Caiqin Zhao


Effective prediction of financial failures has been of great importance to Chinese listed companies because it can exert a big influence upon financial decisions to be made by investors, creditors and banking officers. For this purpose, neural network method has been introduced, and it has become a hot spot in this domain. LVQ (LearningVector Quantization) neural networkmethod is adopted to set up a prediction model of financial failure in accordance with latest financial data of 14 listed companies. Repeated training and learning of the sample brings LVQ out.Acomparison between LVQ and traditional BP (Back Propagation) has proved that LVQ algorithmhas a higher prediction accuracy, which indicates that LVQ neural network method will enjoy good application prospect in the field of financial failure prediction.


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 電子ジャーナルライブラリ
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル