抽象的な

BP neural network-based world men decathlon performance development trend research

Zhendong He, Ruimin Hu


The paper makes statistics of world men decathlon world annual best performances in ten years during 2004~2013, applies principal component analysis and BP neural network combinative method to establish prediction model. The paper carries on principal component analysis of statistical data, and solves four principal components. On the basis of principal component analysis result, take previous year men decathlon four principal components as input, and the second year men decathlon performances as output, it establishes BP neural network model. The paper takes neural network training with performances during 2004~2011, uses performances from 2011 to 2013 to detect established prediction model accuracy, applies 2013 principal component data into predicting, and gets men decathlon annual best performance in 2014 is 8750.5 points. Take principal component analysis’ data handling result as input, it solves men decathlon individual event many data and each individual event performance stronger correlations bad impacts on prediction model’s prediction accuracy, enhances prediction model’s prediction accuracy, and expands BP neural network predication model application.


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • 学術論文インパクトファクター (SAJI))
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル