抽象的な

City innovation capability evaluation method based on support vector machine

Yong-li Zhang, Yan-wei Zhu


China will develop into an innovative country in 2020. It has become an important topic that study on evaluation method of innovation ability. But the science and technology innovation capacity determination is complex, there are many factors affecting the innovation ability, there are a non-linear relationship, uncertainty and ambiguity. Support vector machine is a statistical learning method based on small samples, using structural risk minimization principle, and it is good generalization ability. This paper uses support vector regression algorithm to evaluate the ability of innovation of science and technology, get the support vector machine regression model, Through the 2013 yearbook data analysis of the experimental results, this method is achieved very good results in evaluation of regional innovation capacity.


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • 学術論文インパクトファクター (SAJI))
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル