抽象的な

Combining Mechanistic Models and Machine Intelligence to Investigate the Druggable Region Surrounding the Fanconi Anaemia Pathway

Mohamed Alber


 Given the imbalance between samples and candidate genes, and despite the amount of genomic data, it is challenging to develop predictive models that explain phenotypes as a function of gene expression or mutations. And in situations when sample availability is problematic, like in the case of uncommon diseases, this is more striking. Results we identified over 20 possible treatment targets by using multi-output regression machine learning approaches to estimate the potential impact of exogenous proteins over the signaling circuits that initiate Fanconi anemia-related cell functionalities. The systematic search for new targets in rare diseases is made possible by the use of artificial intelligence tools for the prediction of potentially causative links between proteins of interest and cell activities associated with disease-related phenotypes.


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • ユーロパブ
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル