抽象的な

Combining social network information with probabilistic matrix factorization to enhance recommendation performance

Hui Li , Yun Hu , Jun Shi, Yong Zhang


This paper examines the problem of social collaborative filtering to recommend items of interest to users in a social network setting. Many social networks capture the relationships among the nodes by using trust scores to label the edges. The bias of a node denotes its propensity to trust/mistrust its neighbours and is closely related to truthfulness. It is based on the idea that the recommendation of a highly biased node should be removed. In this paper, we propose a model-based approach for recommendation employing matrix factorization after removing the bias nodes from each link, which naturally fuses the users’ tastes and their trusted friends’ favours together. The empirical analysis on real large datasets demonstrate that our approaches outperform other state-ofthe- art methods


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • ユーロパブ
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル