抽象的な

Comparison of remote sensing techniques to exploit irrigated agricultural lands from satellite images

Alikhah-Asl Marzieh, Forootan Elham, Namdar Mohammad


Knowledge of agricultural and horticultural land use percent is necessarily important for supplying human food and should be considered in agricultural planning. Remote sensing provides valuable data on land use classes. Mapping land use through remotely sensed images comprises various considerations, processes and techniques. In this research, four methods (ICA, Tasseled Cap, NDVI and supervised classification) have been utilized for extraction of irrigated land class in a part of Hablehrood watershed. The results of this investigation showed that among the studied techniques; ICA which uses the higher order statistical characteristics of multispectral and hyper spectral imagery such as skewness and kurtosis has the highest accuracy, whereas supervised classification has the lowest accuracy. Moreover; this research revealed NDVI accuracy is more than Tasseled Cap.


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • 学術論文インパクトファクター (SAJI))
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル