抽象的な

Effect of Magnesium Addition on Microstructure and Mechanical Properties of Lead-Free Zinc-Silver Solder Alloys

Md. Anisul Islam and Ahmed Sharif


Replacing the lead (Pb)-containing solders with the Pb-free solders in electronic products has been a global trend due to environmental and human health concerns for Pb toxicity. Many kinds of Pb free solder alloys have been proposed to date. Zinc (Zn) based Pb-free solder can be a promising alternative of Sn-Pb solder because of its competitive price and mechanical properties. In this research, Zn based solder alloys were developed by addition of silver (Ag) and magnesium (Mg) through conventional casting method. The changes in tensile strength, microhardness microstructure associated with the addition of relatively high melting point noble metal namely Ag were investigated in this work. Furthermore, the effects Mg addition on these mechanical properties and microstructure of the promising candidate Zn-Ag based alloys were extensively reported. Chemical composition of the alloys was confirmed by XRF analysis. A significant change in microstructure, microhardness and strength were found with the change of Ag content. A more interesting point is that the addition of Mg with Zn-Ag alloy increases the microhardness and strength to a large extent as well as ternary eutectic phases in the microstructures.


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • コスモスIF
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル