抽象的な

Mathematical expression of 1D-nanodoping

Pierre Hillion


1D -nanodoping is supposed to be a perturbation generated by a sequence of delta Dirac pulses satisfying the relation ð[sin(ð)] = ?n (n) where n is an integer. Applications are discussed first for acoustic waves in a jerky flow, and for a scalar Bessel beamin a flow with a nanodoped velocity then for TE, TM fields inside a perfect conductor cylindrical wave gui-de with a nanodoped permittivity. We finally consider electromagnetic flashes.


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 電子ジャーナルライブラリ
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル