抽象的な

Non-rigid object tracking via discriminative features

Qian Wang, Qingxuan Shi


Non-rigid objects are typically complex and difficult to track due to the appearance change caused by geometric changes. In this paper, we model the appearance of non-rigid objects by discriminative features which are adaptively selected according to their descriptive ability. To adapt to the geometric changes, we use a deformable rectangle to represent the object, and use Markov Chain Monte Carlo-based Particle Filter (MCMCPF) to estimate the state of the object in a restricted four-dimensional space. Experimental results show that the proposed tracking algorithm has ideal performance.


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • ユーロパブ
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル