抽象的な

Self-adapted fuzzy C-means segmentation algorithm based on bacterial chemotaxis

Li Yanling, Li Gang


Although fuzzy c-means algorithm is one of the most popular methods for image segmentation, it is in essence a technology of searching local optimal solution and sensitive to initial data. For this, self-adapted fuzzy c-means segmentation algorithm based on bacterial chemotaxis is proposed in this paper. In the new algorithm, selfadapted fuzzy c-means algorithm is used to get the initial number of clusters and bacterial chemotaxis algorithm is used for avoiding falling into local optimization. Experimental results show that the proposed algorithm used for image segmentation can segment images more effectively and can provide more robust segmentation results.


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • ユーロパブ
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル