抽象的な

Spatial neighborhood classifiers

Liao Wei-Hua


Spatial data classification is a high-frequency spatial decision evaluation method. It can only choose according to experience frequently. When there were many spatial decision evaluation conditional attributes, such as hyperspectral image, it has obviously been lack of strong mathematics foundation. As an uncertainty mathematical method, Pawlak rough set can only dispose discrete data formerly, so we must discrete spatial continuous data when using this method, it would bring the profits and losses of the information in the transformation process. We used neighborhood rough set concept, and put forward a spatial continuous data classification method based on neighborhood rough set, when conditional attribute is continuous data and decision attribute is discrete data


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • ユーロパブ
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル