抽象的な

The classification of multiclass tumor gene expression data based on two-layer particle swarm optimization

Yajie Liu, Xinling Shi, Changxin Gou, Baolei Li, Lian Gao


The classification of gene expression data to determine different type of tumor samples is significantly important to research tumors in molecular biology level formaking further treatment plan of the patient. Particle swarm optimization (PSO) has employed as a solution for classification and clustering in bioinformatics. In this study, a classifier based on the two layer particle swarm optimization (TLPSO) algorithm is established to classify the uncertain training sample sets obtained from gene expression data of breast, prostate, lung and colon tumor samples. Compared with PSO and K-means algorithm in validation, the classification stability and accuracy based on the proposedTLPSOalgorithmis improved significantly, which may provide more information to clinicians for choosing more appropriate treatment.


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • 学術論文インパクトファクター (SAJI))
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル