抽象的な

Use of artificial neural network for modeling of simultaneous adsorption of cyanide and phenol on granulated activated carbon

BhumicaAgarwal, Chandrajit Balomajumder, Prabhat Kumar Thakur


In this study, a three layer artificial neural network was used to predict the simultaneous adsorption efficiency of phenol and cyanide on granular activated carbon. The input layer consisted of 5, 15, 2 neurons in input layer, hidden and output neurons respectively. Five operating variables namely pH, contact time, adsorbent dosage, temperature and initial concentration of phenol/cyanide was used as input to the constructed neural network to predict the adsorption efficiency of phenol and cyanide. A comparison between the experimental and predicted values by using neural network showed high correlation coefficient of 0.984 and 0.988 for phenol and cyanide respectively. Results indicated that contact time is the most influential parameter on output variable (23.57%) followed by initial concentration of phenol/cyanide (21.16%), adsorbent dosage (20.79%) and pH(19.44%).


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 電子ジャーナルライブラリ
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル