抽象的な

User integrated similarity based collaborative filtering

Tian-Shi Liu, Nan-Jun Sun, Liu-Mei Zhang


Traditional similarity calculation method in collaborative filtering is inaccuracy due to the extreme sparsity of user rating data. To address this problem, we propose a collaborative filtering recommendation algorithm based on user integrated similarity. The algorithm modifies the similarity calculation formula by introducing the common factor. Then it introduces the item category interestingness eigenvector by category of items and distribution of user ratings to construct the user’s item category interestingness similarity. Finally, it combines the user rating similarity to construct the integrated similarity, and generates recommendations. The experimental results show that this algorithm can effectively relieve the inaccuracy of traditional similarity calculation method in the case of extreme sparsity of user rating data, and improve the quality of the recommendation of recommender systems.


免責事項: この要約は人工知能ツールを使用して翻訳されており、まだレビューまたは確認されていません

インデックス付き

  • キャス
  • Google スカラー
  • Jゲートを開く
  • 中国国家知識基盤 (CNKI)
  • サイテファクター
  • コスモスIF
  • 研究ジャーナル索引作成ディレクトリ (DRJI)
  • 秘密検索エンジン研究所
  • 学術論文インパクトファクター (SAJI))
  • ICMJE

もっと見る

ジャーナルISSN

ジャーナル h-インデックス

Flyer

オープンアクセスジャーナル